
1

REAL-TIME TRANSPARENT CRYPTO ANALYTICS PLATEFORM

Urs A. Hurni

University of Lausanne

urs.hurni@unil.ch

1 ABSTRACT

This report outlines the development of a web-
based application designed for real-time
sentiment analysis in the cryptocurrency market.
Utilizing a user-friendly interface, the platform
equips users with dynamic insights necessary for
informed decision-making in a volatile trading
environment. It is built on a modular architecture
using Flask, a Python-based framework, ensuring
ease of maintenance and scalability. Key features
include real-time data fetching from various APIs,
sophisticated prediction models, and effective
caching mechanisms to enhance performance
and responsiveness. The application integrates
advanced analytical tools and ensures
transparency by making all data and methods
accessible to users.

2 INTRODUCTION

Cryptocurrency, especially with the rise of web3,
aims to empower users by promoting
transparency. In the ever-changing and
unpredictable world of cryptocurrency,
understanding market sentiment can provide
valuable insights. It helps to gauge the emotions
and psychology of market participants, which
often influence price movements and trends.
Unfortunately, many existing sentiment analysis
tools are not very clear or reliable. For example,
the popular fear and greed index does not display
the algorithm or weighting used.

Transparency is particularly important in
sentiment analysis for cryptocurrency markets.
These markets are decentralized and known to be
highly influenced by hype and panic, making them
sensitive to changes in trader sentiment.
Analysing sentiment in traditional stock markets is
already challenging, and it's even more difficult in
the more volatile cryptocurrency market. Many
current tools lack transparency in their methods
and don't provide access to the raw data used.
This makes their insights less useful.

The usefulness of such applications goes beyond
just individual traders or market analysts. In
today's financial analysis, traditional models often
fail to consider the irrational and emotional factors
that drive market movements. Sentiment analysis
tools can help fill this gap. By including sentiment
data, financial models can become more robust
and offer predictions that are more in line with
real-world outcomes. For institutions, this means
better risk management and more informed
strategic decisions.

Furthermore, the significance of sentiment
analysis is expected to grow as the
cryptocurrency market evolves and more
institutions get involved. As these markets
integrate more with traditional financial systems,
there will be a higher demand for advanced,
transparent, and effective analytical tools.
Sentiment analysis will play a key role in meeting
this demand, helping both individual and
institutional investors make better decisions
based on a clearer understanding of market
emotions and psychology.

3 DESCRIPTION

3.1 Research Question

The central research question of this project is:
How can programming tools be effectively utilized
to develop an application for cryptocurrency
sentiment analysis?

3.2 Literature Review and Theoretical
Background

The importance of this question is evident given
the increasing complexity of financial markets and
the crucial role of technology in financial analysis.
Richard L. Peterson discusses how market
sentiment affects financial markets, emphasizing
the need for real-time data processing and natural
language processing (NLP) tools to understand
market trends [1]. Peterson's discussion highlights
the essential need for strong web applications that
can efficiently inform the user.

In the field of software engineering and web
development, there are many strategies for
improving web applications. One important
strategy is the use of microservices architecture.
This approach allows developers to build
applications in a modular way, where different
parts of the application, such as data fetching,
processing, and user management, are created
and deployed independently [2]. This method is
particularly useful for financial analysis tools,
which need to combine various data streams and
processing functions in a clear and maintainable
way.

Another key strategy is the use of caching
mechanisms and session management
techniques to enhance the performance of web
applications. When a web application experiences
heavy user traffic or a large influx of data, it can
become slow or unresponsive. Caching solutions
help by temporarily storing frequently accessed
data, which can significantly reduce load times
and lessen the strain on servers [3]. This is
especially important in cryptocurrency analysis,

2

where users need quick access to the latest
market data.

3.3 Objective

The main objective of this project is to develop a
structured and flexible platform for investors. It will
display relevant market information and include
some prediction model, which uses the collected
and standardized data to provide real-time
insights and predictions about the cryptocurrency
market. The platform is intended to have a user-
friendly interface, making it easy for both
beginners and experienced investors to
understand and use the sentiment analysis to
make informed decisions.

However, due to the lack of free APIs to get
reliable news, the focus of the project will load the
data once and use it for the subsequent analysis
to avoid surpassing the free tier limit. This base
system will also use additional free APIs to
increase the data pool, recognizing that these
sources may not always be as reliable or
comprehensive as paid APIs, but it can still
provide valuable guidance. If wanted, it can be
easily enhance by just implementing new classes
for new APIs and transforming the receiving data
into the same format as the others.

To ensure the platform remains adaptable and
doesn't require a complete overhaul in the future,
it will be built with modular components using
object-oriented programming (OOP). This
approach allows for straightforward integration of
new data sources by managing various data
formats and making them compatible with the
existing system. As access to better data sources
is gained, they can be incorporated with minimal
effort.

The project also focuses on increasing
transparency in how market analyses are
conducted. Documentation will be provided at
each stage of the data processing and analysis,
as well as complete docstrings for the methods
used. The app will be hosted on GitHub for ease
of access, clearly showing users the origins and
reliability of the information they receive. This
clarity will help foster trust and provide users with
the confidence to rely on the platform.

3.4 Scope

This project is streamlined due to the restricted
availability of free and reliable data sources. The
primary goal is to develop a basic platform
template by leveraging a few APIs to create a
model that acts as a preliminary prototype for
future enhancements. This initial version will
display its capabilities with real market data and
use the predictive models to generate valuable
insights. This phase aims to validate the concept's
efficacy and lay a solid foundation for potential

scaling as more data becomes available or if there
is further investment in the project.

Furthermore, the project encompasses the
creation of an intuitive web interface. This
interface is intended to enable easy access and
navigation of the platform’s features, ensuring
user-friendly operation.

By focusing on a basic structure and simple APIs,
the project remains manageable. This focused
approach ensures that the platform's essential
components are solid and well-built before
additional features are considered.

4 METHODOLOGY

4.1 Application Architecture

The application's architecture leverages Flask, a
Python-based micro web framework, to handle
HTTP requests and serve dynamic content. Flask
was chosen for its simplicity and efficiency in
small-scale projects, making it ideal for real-time
data processing and response. Flask routes
handle web requests and responses. They
manage user sessions, from submissions, and
redirect behaviours. The application structure is
divided into several key modules, each
responsible for distinct aspects of the program.
Multiple API modules are used to fetch news and
cryptocurrency data. Visualization and Analysis
are regrouped in one module to generate plots
and forecasts. The sentiment module is
responsible to apply the FinBERT model in order
to create a score on specific news data.

4.2 Real Time Data Fetching

To thoroughly encompass the diverse and
nuanced landscape of cryptocurrency news, it is
needed to gather information from a broad and
varied dataset. Therefore, five specialized crypto
news APIs have been selected as the primary
sources.

This includes NewsAPI, CryptoPanicAPI,
CryptoDataFetcher, CryptoNewsAPI, and
SeekingAlphaNewsAPI.

• NewsAPI: Provides broad news coverage
including general updates in the
cryptocurrency sector.

• SeekingAlphaNewsAPI: Known for its
detailed financial analysis, this API provides
insights focused on cryptocurrency market
movements and significant financial trends
that could impact the cryptocurrency
landscape.

• CryptoPanicAPI, CryptoDataFetcher, and
CryptoNewsAPI: These APIs have been
chosen for their availability and to enrich the
dataset with targeted cryptocurrency news
and timely updates, ensuring a
comprehensive collection of information
directly relevant to the crypto markets..

3

To enhance this global perspective, adding an
economic perspective is interesting. Therefore,
USEconomyAPI will be used for this macro
economic perspective

• USEconomyAPI: Offers news articles focused
on economic aspects that might impact or
reflect the state of the broader economic
markets.

Furthermore, one crypto price API will be used for
gathering real time price data.

• Coinkranking API, provides real-time
cryptocurrency pricing as well as historical
pricing.

Each APIs has it’s own modules that are used to
fetch and retrieve news articles related to
cryptocurrencies and economic context for
adaptability and ease to use. They provide a rich
and up-to-date dataset of textual content which is
then analyzed for sentiment.

4.3 Prediction Model

Although the detailed prediction model is
addressed in a complementary report, a brief
overview is provided here.

It consist of :

• Studying the relationships between different
market variables

• Using AutoRegressive Integrated Moving
Average models for time series forecasting

• Implementing machine learning models to
predict future price movements based on the
fetched data.

• Utilizing those models to judge predictive
accuracy by considering different metrics

These models help in understanding how
sentiment analysis can predict future price
movements, providing a comprehensive analytical
tool for users.

4.4 Dashboard

The project's focus is on creating an intuitive and
user-friendly dashboard.

The dashboard allows users to:

• Choose between different input parameters
like time period (daily or monthly) and
category (e.g., meme coins, DeFi projects,
layer-1 solutions, …).

• Select the prediction model (linear regression,
random forest, svr, gbm) developed in parallel
in the complementary project.

• See the result in a comprehensive manner

5 IMPLEMENTATION

5.1 Program Implementation

The app has the following structure

1) Main page, index.html

2) Dashboard, dashboard.html

a. Graphical visualisation of sentiment
and price

 b. Arima forecast

 c. Lag correlations plots and models
 metrics

 d. Average predictions

The core functionality of the platform is contained
within a Python script, app.py, which serves as the
backend of the application. Several routes are set
up that handle different aspects of user
interaction and data processing.

1) The main page serves as the application's
primary interface where users begin their
interaction. The index route in the code serves
as the entry point for the data. When a user
accesses the base URL, they are greeted with
a form on the index.html page, which allows
them to specify their preferences for the data
analysis. The form includes three dropdown
menus that allow users to select the
cryptocurrency category, the time frame for
the data (days back), and the type of model
for the analysis (e.g., linear, random forest).
Once the form is submitted using a POST
request, the user's choices are saved to the
session, and they are redirected to the
/dashboard route. This setup is intended for
personalizing the user experience by tailoring
the data fetched and analysed to their specific
interests and need. In addition to the form, the
main page displays real-time cryptocurrency
prices in a banner at the top, providing users
with immediate market updates.

2) The dashboard route is where the bulk of data
processing and user interaction takes place.
Upon reaching this route, either through a
POST request (with updated settings from the
user) or a GET request (using existing
session data), several operations occur:

a. Data Fetching: Depending on the
days_back and category specified,
the appropriate news and price data
are fetched. This might involve calling
external APIs or retrieving cached
data if available.

b. Data Processing: The fetched data
undergoes sentiment analysis and
any necessary preprocessing. This
include cleaning data, standardizing
formats, and calculating sentiment
scores.

c. Visualization Generation: Using the
processed data, various
visualizations are generated to
illustrate trends, correlations, or
forecasts related to prices and
sentiment. It displays a combined plot
of sentiment analysis results and
cryptocurrency price movements.
These visualizations help users

4

visually comprehend the data. The
ARIMA forecast is also presented in a
plot format, providing predictions that
help users anticipate potential market
trends. Different lags can be selected
here through a dropdown menu that
shows the different lags options. This
will refresh the updated page.

d. Data Display: The route then renders
the dashboard.html template,
displaying the fetched news in a table
format, alongside the visualizations
and sentiment analysis results. It also
handles user interactions for
further refining the analysis, such as
changing the lag or the model type for
predictions.

Fig. 1 : App Code’s Structure

5.2 Modularity

To make the application modular, it was broken
down by functionalities into separate, independent
parts. Each part, or module, has a specific job,
which makes the code easier to manage and more
flexible.

API Handler Modules: These include NewsAPI,
USEconomyAPI, SeekingAlphaNewsAPI,
CryptoPanicAPI, CryptoNewsAPI, and
CryptoDataFetcher classes. Each one is
responsible for getting data from a specific

source. They handle everything related to API
requests, like authentication, dealing with errors,
and fetching data.

DataHandler: This module cleans and
standardizes the data. It makes sure that dates
and formats are consistent across different
datasets, so the data is ready for analysis.

SentimentAnalyzer: This module analyzes the
sentiment of the news data. It uses natural
language processing (NLP) to examine the text
and assign sentiment scores, which are important
for further analysis.

Visualizations: This module creates all the charts
and graphs. It takes the processed data and turns
it into visual formats that are easy for users to
understand.

The connections between these modules are
designed to keep them independent. Each
module has a set of functions that other parts of
the application can use. These functions are clear
and well-documented through extended
docstrings. The methods in each class are
designed to do specific tasks related to that class.
This means the internal workings of one class
don’t interfere with others.

Environment Variables are used for API keys and
other sensitive information. This way, these
details are not hard-coded into the modules and
can be easily changed without modifying the
code.

5.3 Data Fetching and Processing

In order to fetch real time data it is needed to have
several APIs that gather information and retrieve
it into the right format for further use.

Each dataset fetched from API will need to be
transformed to match the same format and to
allow further usage. Indeed, every API outputs it’s
data in different format. The DataHandler class
(hd) plays a central role in managing the various
tasks associated with data retrieval, processing,
and storage. This section provides an overview of
the data processing activities. All dates and
header needs to be in the same formats. Thus,
standardization is needed. Crucial to maintain
consistency.

5

1) The datasets obtained from the APIs are
merged into a single DataFrame. This
consolidation is necessary to combine varied
data points into a unified format for
comprehensive analysis.

2) The merged data is then cleaned, this
involves processing duplicates by comparing
text fields across news articles

3) Cryptocurrency price data is transformed to
align with news data as the merge occurs via
the ‘date’.

4) Price data is scaled between 0 and 1 to match
the scale of sentiment scores derived from
news articles, facilitating comparative
analysis.

5) Using resampling techniques, daily closing
prices are computed by taking the last
recorded price for each day, which is at 12PM.

6) Price changes are calculated as daily
percentages to analyse the relationship
between market movements and news
sentiment.

7) To study the effect of news sentiment on
subsequent price movements, the daily price
change data is shifted backward by one day
(shift(-1)), aligning it with the corresponding
day’s sentiment data.

8) The processed price data and sentiment
scores are merged based on date indices.
This merged dataset includes key variables
such as normalized prices, the following time
period price change, and average time period
sentiment. This combination is critical for
examining the interplay between market
sentiment derived from news and actual
market performance.

9) The final dataset is reviewed for any missing
values resulting from non-overlapping dates
or the data shifting process. Rows containing
NaN values are carefully handled to ensure
the dataset's completeness and readiness for
robust analysis.

The flowchart (fig. 2) outlines a the approach to
data fetching using APIs. The process begins by
loading necessary environment variables, such as
API keys, to set up secure API communications.
Next, an API class is initialized to configure
endpoints and parameters. The system then
makes requests to the specified APIs, iterating
through each if multiple are involved. Upon
receiving data, it processes the responses,
checking for any errors. Errors are handled by
appropriate measures like retrying requests or
logging issues, whereas successful responses
move to the next stage. The relevant data from
these responses is extracted and organized into a
DataFrame, a structured format suitable for
analysis. If data from different sources are
involved, these DataFrames are combined to
consolidate the information.

 Fig. 2: API functionality Flowchart

5.4 Visualization and Response

The Visualizations class generates interactive
charts using Matplotlib and integrates them into
the Flask application via HTML templates. These
visualizations dynamically represent the
correlation between market sentiment and
cryptocurrency prices, helping users make
informed decisions.

This work with the for_web parameter when it is
set to True in Python plotting functions, it modifies
the output for web integration. Normally, plotting
libraries like matplotlib display plots interactively
or inline within a Jupyter notebook. For web
applications, however, plots need to be in a format
suitable for embedding into webpages. Setting
for_web to True leads to the plot being rendered
into a BytesIO buffer in SVG format, which is
chosen for its scalability and high-quality

6

rendering on web pages. The SVG data is then
converted to a string, which can be easily
embedded into HTML or transmitted over the web,
replacing the typical direct display of the plot.
Moreover, data may be serialized into formats like
JSON, including URLs for SVG images or data
points that can be used by web clients for
rendering or processing. For instance, in the
plot_normalized_price_and_sentiment method
with for_web enabled, the plot is saved as SVG
and the content is extracted as a string for direct
use in web HTML or as part of a web response.
Similarly, the analysis method generates plots,
converts them to SVG, and forms URLs for
inclusion in web pages, while also preparing other
statistical results in a web-friendly serialized
format.

5.5 Session Management

Flask's session management capabilities are
used to store user preferences and states across
multiple views, enhancing personalized user
interactions without sacrificing performance. Flask
uses a client-side session storage mechanism,
where the session data is stored in the user’s
browser as a cookie. During the initialization of the
Flask app in app.py, a secret key is configured
using app.secret_key = os.urandom(24) to
cryptographically sign the session cookies,
safeguarding against data tampering. When a
user submits their preferences through the form
on the index.html page, these choices are
captured and stored in the session using code
such as session['days_back'] =
request.form['days_back']. This stored data is
accessible across all routes within the application
and persists until the session cookie expires or is
explicitly cleared, thus facilitating a consistent and
customized user experience. In the dashboard
route, the application accesses these session
variables to fetch relevant data, perform analysis,
and tailor visualizations to the user's preferences,
for example, using days_back =
int(session.get('days_back', 1)) to retrieve the
'days_back' value from the session.

5.6 Caching Mechanism

The application uses the flask_caching module to
add caching, which improves performance by
saving the results of time-consuming tasks like
fetching data and analyzing sentiment. This
makes the app faster and eases the load on the
server, ensuring it stays responsive when users
revisit results.

The cache is set up using the Cache class from
flask_caching. It is configured to use
"SimpleCache," an in-memory cache that's good
for single-process setups. The cache timeout is
set to 86400 seconds (24 hours), meaning the
cached data expires after one day unless it's
updated. This configuration is defined in the app's
settings (app.config).

Functions such as fetch_news and
perform_sentiment_analysis are marked with the
@cache.cached decorator, which automatically
saves their outputs. The cache key for each
function is created using helper functions
(make_news_cache_key and
make_sentiment_analysis_cache_key). These
keys ensure each unique request has its own
cache entry.

The cache keys are dynamically generated to
reflect the specific parameters of each request,
such as the number of days back or the category
of news. This granularity ensures that users
receive data that is both up-to-date and relevant
to their specific query, without unnecessary data
recomputation.

By caching the results of data-intensive
operations, the application minimizes the number
of times these operations need to be performed.
This speeds up response times for end-users but
also reduces the load on the server and external
APIs. Since the app uses free tier API, as already
discussed, reducing the frequency of API calls
can also help avoid hitting usage limits or, in the
case of paid APIs, reduce costs.

6 CODE MAINTENANCE

6.1 Github

The app uses Git as a version control system,
enabling developers to track changes, revert to
previous versions of the code, and manage
multiple development branches efficiently. Git
ensures that the development process is smooth,
and changes can be integrated seamlessly. Each
feature and bug fix is can be developed in its own
branch, and merged into the main branch upon
completion.

Here is the structure of the repository, showing
only the main files and directories.

CRYPTO-SENTIMENT-TRACKER/

├── data/ # Contains the data files

├── docs/ # HTML files

├── modules/ # Python scripts modules

├── notebooks/ # Jupyter notebooks

├── static/ # Static files (CSS, JS)

├── venv/ # Virtual environment

├── .env # Environment variables

├── app.py # Main Python script

Detailed explanation are in the read.me for the
installation process

6.2 Error Handling and Logging

Error handling mechanisms ensure the
application remains operational even when
external APIs fail or return unexpected responses.
Logging is extensively used to monitor application
performance and debug issues in real-time.

7

6.3 Unit Testing

The app.config['TESTING'] setting enables test
mode in Flask, simplifying test execution and
environment configuration. It is implemented in
the code so that when set to True it does not make
API calls but use previous dataset that were called
and stored. This allow for easy debugging as often
the APIs have free tier with limit rate.

6.4 Update

As briefly mentioned earlier, this project is a
template project which uses a specific set of free
APIs. However, it is built with expansion in mind.
Therefore, it can be easily updated to include
further new API that might provide additional
informations. Indeed, adding a modules for a
specific API is quite easy the only to be sure of is
that the returned dataframe matches the format of
what is needed for the further analysis.

7 RESULT

The home page of the app (fig 3) is easy to
understand and user-friendly. It starts with a brief
introduction and shows a Data Submission Form
right on the front page, which is simple to use. This
allows users to quickly and easily enter their
information. If users need help, there’s extra
documentation they can refer to. The top of the
page features a moving banner that shows
cryptocurrency prices, much like those found in a
stock trading room. Here the user can selected the
time frequency and the category as shown in
figure 4.

Fig. 3. : Main Page

Upon form submission, the user is taken to the
dashboard page, which initially presents a plot of
the price and sentiment analysis based on the
selected time frequency and category (Figure 5).
This visualization offers an immediate insight into
the data trends within the chosen parameters.

This allows the user to have a first glance of how
the data behaves in this current category and
timestamp.

Fig 4. : Form Selection Example

Further down, a scatter plot visualizes the
relationship between price changes and lagged
sentiment (Figure 6). Users can interact with this
plot by selecting different lags to examine how the

data relationships vary with changes in lag,
enhancing understanding of the impact of
sentiment on price. The information are shown in
a transparent manner so the user can judge by
himself the reliability of the results.

Fig 5. Dashboard

8

Fig 6. : Scatter Plot

Below this, the page displays several metrics that
enrich the analysis, including correlation
coefficients, average price changes on days with
high versus low sentiment, R-squared values, and
Root Mean Square Error (RMSE), all illustrated in
Figure 7. These metrics provide a comprehensive
overview of the dataset's performance and its
analytical reliability.

Fig 7. : Metrics

Further down, predictions specific to the chosen
lag are shown, alongside an overall average
prediction across all lags, offering forecasts based
on the sentiment analysis (fig 8).

Fig 8. : Predictions

Descending further the user will have a glance on
the ARIMA model implemented on the price data.
This can serve as a benchmark fit a rather
conservative model as even if the ARIMA is in
auto mode it will almost always make a mean
forecast as price data are very unpredictable and
following a random walk. As shown in the figure 9,
average predictions as well as confidence
intervals are demonstrated there so the user know
what to expect as a benchmark to compare the
performance of the other metrics

Finally at the bottom of the page the data use is
shown in a table format. As shown in figure 8 this
further increase the transparency to see on what
data the model worked on (fig 10)

Fig 9. : ARIMA

Fig 10. : News Table

8 CONCLUSION

The project describes the development of the
web-based application designed to provide
transparent, real-time sentiment analysis tailored
to the cryptocurrency market. This platform offers
a user-friendly interface that enables users to
make informed decisions based on
comprehensive market insights. The application
leverages a modular design and a robust set of
APIs to ensure data freshness and usability. It
supports real-time data fetching and incorporates
advanced prediction models to deliver dynamic

9

insights crucial for users in the volatile
cryptocurrency market.

A significant aspect of the application is its
modular architecture, which simplifies ongoing
maintenance and future updates. This design
allows easy integration of new functionalities or
improvements based on user feedback and
changing market conditions. The report highlights
the platform's capability to handle initial
computations and unique, uncached queries
slowly, which is a critical point for optimizing
performance.

Testing the applications reveals the use of Flask,
a Python-based micro web framework, which
facilitates the handling of HTTP requests and
serves dynamic content effectively. This choice
supports the application's need for real-time data
processing and response, making it suitable for
the fast-paced environment of cryptocurrency
trading.

The application can however experience slow
response times during first-time computations or
when dealing with unique queries that haven't
been cached.

Looking forward, there are several areas for
potential development. One possibility is
transforming the current modules into
microservices, enhancing scalability and
flexibility. This change would support separate
deployment and better resource management,
aligning the platform with modern, cloud-native
practices to boost performance and reliability.
Additionally, improving caching strategies could
reduce load times, and introducing asynchronous
processing would allow tasks to run in the
background, thereby speeding up user
interactions [4].

9 APPENDIX

9.1 References

[1] L. Chappex, "Interview with Richard Peterson,
CEO of MarketPsych," Swissquote, [Online].
Available: https://en.swissquote.lu/international-
investing/investing-ideas/interview-richard-
peterson-ceo-marketpsych. [Accessed: May 21,
2024].

[2] Johns Hopkins University, "Cloud-native
Architecture and Microservices - 605.702,"
[Online]. Available:
https://ep.jhu.edu/courses/605702-cloud-native-
architecture-and-microservices/.

[3] M. I. Zulfa, R. Hartanto, and A. E. Permanasari,
"Caching strategy for Web application – a
systematic literature review," International Journal
of Web Information Systems, [Online]. Available:
https://doi.org/10.1108/IJWIS-06-2020-0032.

[4] S. Hauck, "Asynchronous Design
Methodologies: An Overview," University of
Washington, [Online]. Available:
https://people.ece.uw.edu/hauck/publications/Asy
nchArt.pdf

9.2 Helper Tools

Chat-GPT

Co-pilot

